Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Reinvestigation of $\mathrm{Ge}_{4} \mathrm{Se}_{9}$ based on single-crystal data

Jung-Eun Kwak and Hoseop Yun*

Department of Molecular Science and Technology, Ajou University, Suwon 442-749, South Korea
Correspondence e-mail: hsyun@ajou.ac.kr

Received 27 June 2005
Accepted 8 July 2005
Online 30 July 2005
Tetragermanium nonaselenide, $\mathrm{Ge}_{4} \mathrm{Se}_{9}$, adopts a two-dimensional layered structure. The layer is made up of infinite chains of corner-sharing GeSe_{4} tetrahedra and the chains are connected via the $\mathrm{Ge}_{2} \mathrm{Se}_{7}$ unit to form the two-dimensional layer. These layers are stacked to form the three-dimensional structure with a van der Waals gap. A previous structure report on $\mathrm{Ge}_{4} \mathrm{Se}_{9}$ based on powder diffraction data [Fjellvåg, Kongshaug \& Stølen (2001). J. Chem. Soc. Dalton Trans. pp. 1043-1045] is comparable with our results except for the absolute structure determination.

Comment

The synthesis of polycrystalline $\mathrm{Ge}_{4} \mathrm{Se}_{9}$ has been reported and its structure was previously determined $a b$ initio from X-ray powder diffraction data using a combination of direct methods and the Rietveld technique (Fjellvåg et al., 2001). Single crystals of reasonable quality and size suitable for a singlecrystal X-ray diffraction study were not obtained using traditional solid-state synthetic techniques. We have used alkali metal halides as fluxes to prepare single crystals of metal chalcogenides, and this synthetic technique appears to be of general utility in preparing crystalline chalcogenides (Do \& Yun, 1996; Kim et al., 1997). We describe here the synthesis and structural characterization of $\mathrm{Ge}_{4} \mathrm{Se}_{9}$ single crystals.

Figure 1
$\mathrm{Ge}_{4} \mathrm{Se}_{9}$, viewed down the b axis, showing the stacking of the layers. Filled circles are Ge atoms and open circles are Se atoms.

Figure 2
A view of $\mathrm{Ge}_{4} \mathrm{Se}_{9}$ down the c axis, showing an individual layer and the coordination around the Ge atoms. Atoms are labelled as in Fig. 1. The short $\mathrm{Se}-\mathrm{Se}$ distances are denoted by thick lines for clarity.

The general features of the structure of $\mathrm{Ge}_{4} \mathrm{Se}_{9}$ are the same as previously reported (Fjellvåg et al., 2001). A view down the b axis clearly shows the layered nature of the structure (Fig. 1). Fig. 2 shows that an individual layer is composed of infinite chains of corner-sharing Ge tetrahedra. The chains are connected via $\mathrm{Ge}_{2} \mathrm{Se}_{7}$ units parallel to the a axis to form a twodimensional layer, and these layers are stacked to complete the three-dimensional structure with a van der Waals gap, as shown in Fig. 1. There is no bonding interaction, only van der Waals forces, between the layers.

The structure of $\mathrm{Ge}_{4} \mathrm{Se}_{9}$ is closely related to that of monoclinic $\alpha-\mathrm{GeSe}_{2}$ (Dittmar \& Schäfer, 1976). One-dimensional chains composed of corner-sharing tetrahedral GeSe_{4} units are found in both structures. While the edge-sharing $\mathrm{Ge}_{2} \mathrm{Se}_{6}$ unit (Fig. $3 a$) bridges the chains in GeSe_{2}, the corner-sharing $\mathrm{Ge}_{2} \mathrm{Se}_{7}$ link (Fig. $3 b$) connects the chains in $\mathrm{Ge}_{4} \mathrm{Se}_{9}$.

The $\mathrm{Ge}-\mathrm{Se}$ distances $[2.331$ (2)-2.370 (2) Å] are in good agreement with those calculated from the covalent radii of Ge and Se (1.22 and $1.16 \AA$, respectively; Webelements, 2005) and are comparable with those of other selenogermanates, such as $\mathrm{SrCu}_{2} \mathrm{GeSe}_{4}$ [2.345 (5)-2.370 (4) £; Tampier \& Johrendt, 2001]. As would be expected, the $\mathrm{Ge}-\mathrm{Se}$ distances found here from single-crystal diffraction data are more regular than those reported previously with powder diffraction data $\left[2.287\right.$ (8)-2.405 (6) A]. The bond angles found in the GeSe_{4} tetrahedra do not deviate significantly from the ideal tetrahedral value, except for the $\mathrm{Se} 3-\mathrm{Ge} 2-\mathrm{Se} 9^{\mathrm{ii}}$ angle $\left[93.49\right.$ (6) ${ }^{\circ}$; symmetry code: (ii) $x, y-1, z]$.

The short Se6-Se7 separation [2.3638 (14) \AA] found in the $\mathrm{Ge}_{2} \mathrm{Se}_{7}$ unit is consistent with a typical $(\mathrm{Se}-\mathrm{Se})^{2-}$ pair (Sunshine \& Ibers, 1987). The electrostatic bond valence sums calculated for the present structure (Adams, 2001) are 4.10084.1748 for the Ge atoms, 1.1761 and 1.1651 for atoms Se6 and Se7, respectively, and 2.0281-2.1271 for the other Se atoms, which are in good agreement with the estimated oxidation states from classical charge balance, $\left[\mathrm{Ge}^{4+}\right]_{4}\left[\mathrm{Se}^{2-}\right]_{7}\left[\mathrm{Se}_{2}{ }^{2-}\right]$. The global instability index, GII $=0.1108$ v.u., is a value typical for an unstrained structure (Adams, 2001).

Figure 3
A sketch of the bridging units in GeSe_{2} (left) and $\mathrm{Ge}_{4} \mathrm{Se}_{9}$ (right). Filled circles are Ge atoms and open circles are Se atoms.

Experimental

$\mathrm{Ge}_{4} \mathrm{Se}_{9}$ was prepared by the reaction of elemental Ta, Ge and Se by use of the flux technique. A combination of the pure elements, viz. Ta powder (CERAC, 99.999\%), Ge powder (CERAC, 99.5\%) and Se powder (CERAC, 99.95%), were mixed in silica tubes in an atomic ratio of $\mathrm{Ta}: \mathrm{Ge}: \mathrm{Se}=1: 2: 10$, and then RbCl was added in a weight ratio of $\mathrm{TaGe}_{2} \mathrm{Se}_{10}: \mathrm{RbCl}=1: 2$. The tubes were evacuated to 10^{-2} Torr (1 Torr $=133.322 \mathrm{~Pa}$), sealed, and heated gradually $\left(50 \mathrm{~K} \mathrm{~h}^{-1}\right)$ to 1073 K in a box furnace, where they were kept for 96 h . The tubes were cooled slowly to 473 K at a rate of $4 \mathrm{~K} \mathrm{~h}^{-1}$ and quenched. The excess halide was removed with distilled water. Orange block-shaped crystals of up to 0.3 mm in length were obtained. The crystals are stable in air and water.

Crystal data

$\mathrm{Ge}_{4} \mathrm{Se}_{9}$
$M_{r}=1001.08$
Orthorhombic, $\mathrm{Pca2}_{1}$
$a=17.805$ (6) £
$b=7.002(2) \AA$
$c=12.071(6) \AA$ 。
$V=1504.8(10) \AA^{3}$
$Z=4$
$D_{x}=4.419 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku R-AXIS RAPID-S
diffractometer
ω scans
Absorption correction: numerical
\quad (NUMABS; Higashi, 2000)
$\quad T_{\min }=0.042, T_{\max }=0.220$
13705 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.074$
$S=1.06$
3410 reflections
118 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0242 P)^{2}\right.$
$+4.9288 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
Systematic absences are consistent with the orthorhombic space groups Pbcm and $\mathrm{Pca} 2_{1}$. The initial positions for all atoms were determined by direct methods with the program SHELXS97 (Sheldrick, 1997). A solution with a low figure of merit could only be found in the non-centrosymmetric space group $P c a 2_{1}$. No additional symmetry, as tested by PLATON (Spek, 2003), was detected in this structure. The absolute structure cannot be determined from powder data because Friedel pairs are overlapped. Refinement with the positional parameters from the previous report based on the powder study (Fjellvåg et al., 2001) gave a value of 0.86 (6) for the Flack

> Mo $K \alpha$ radiation
> Cell parameters from 11241 \quad reflections
> $\theta=3.1-27.5^{\circ}$
> $\mu=29.64 \mathrm{~mm}^{-1}$
> $T=291(2) \mathrm{K}$
> Block, orange
> $0.30 \times 0.10 \times 0.05 \mathrm{~mm}$

> 3410 independent reflections
> 2837 reflections with $I>2 \sigma(I)$
> $R_{\mathrm{int}}=0.060$
> $\theta_{\max }=27.5^{\circ}$
> $h=-21 \rightarrow 23$
> $k=-9 \rightarrow 8$
> $l=-15 \rightarrow 15$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.93 \mathrm{e}^{-3}
\end{aligned}
$$

Absolute structure: Flack (1983), with 1615 Friedel pairs
Flack parameter: 0.11 (6)

